<rt id="06y2y"><small id="06y2y"></small></rt> <rt id="06y2y"></rt>
<acronym id="06y2y"></acronym>
技術文章

使用功率MOSFET管中的開關損耗詳解

      

使用功率MOSFET管中的開關損耗詳解

 

深入理解功率MOSFET的開關損耗



做照明驅動的朋友都希望自己做的驅動板能達到很高的效率,除開驅動芯片本身的損耗如果加深對MOS管開關的損耗做適當的電路調整我想多多少少也是可以擠出一部分效率來的哦。
以下內容詳細分析計算開關損耗,并論述實際狀態下功率MOSFET的開通過程和自然零電壓關斷的過程,從而使電子工程師知道哪個參數起主導作用并更加深入理解MOSFET。對提升產品性能應該有所幫助。

 

MOSFET開關損耗
1 開通過程中MOSFET開關損耗
功率MOSFET的柵極電荷特性如圖1所示。值得注意的是:下面的開通過程對應著BUCK變換器上管的開通狀態,對于下管是0電壓開通,因此開關損耗很小,可以忽略不計。

圖1 MOSFET開關過程中柵極電荷特性


開通過程中,從t0時刻起,柵源極間電容開始充電,柵電壓開始上升,柵極電壓為

其中:,VGS為PWM柵極驅動器的輸出電壓,Ron為PWM柵極驅動器內部串聯導通電阻,Ciss為MOSFET輸入電容,Rg為MOSFET的柵極電阻。


VGS電壓從0增加到開啟閾值電壓VTH前,漏極沒有電流流過,時間t1為


VGS電壓從VTH增加到米勒平臺電壓VGP的時間t2為


VGS處于米勒平臺的時間t3為


t3也可以用下面公式計算:


注意到了米勒平臺后,漏極電流達到系統*大電流ID,就保持在電路決定的恒定*大值ID,漏極電壓開始下降,MOSFET固有的轉移特性使柵極電壓和漏極電流保持比例的關系,漏極電流恒定,因此柵極電壓也保持恒定,這樣柵極電壓不變,柵源極間的電容不再流過電流,驅動的電流全部流過米勒電容。過了米勒平臺后,MOSFET完全導通,柵極電壓和漏極電流不再受轉移特性的約束,就繼續地增大,直到等于驅動電路的電源的電壓。


MOSFET開通損耗主要發生在t2和t3時間段。下面以一個具體的實例計算。輸入電壓12V,輸出電壓3.3V/6A,開關頻率350kHz,PWM柵極驅動器電壓為5V,導通電阻1.5Ω,關斷的下拉電阻為0.5Ω,所用的MOSFET為AO4468,具體參數為Ciss=955pF,Coss=145pF,Crss=112pF,Rg=0.5Ω;當VGS=4.5V,Qg=9nC;當VGS=10V,Qg=17nC,Qgd=4.7nC,Qgs=3.4nC;當VGS=5V且ID=11.6A,跨導gFS=19S;當VDS=VGS且ID=250μA,VTH=2V;當VGS=4.5V且ID=10A,RDS(ON)=17.4mΩ。


開通時米勒平臺電壓VGP:


計算可以得到電感L=4.7μH.,滿載時電感的峰峰電流為1.454A,電感的谷點電流為5.273A,峰值電流為6.727A,所以,開通時米勒平臺電壓VGP=2+5.273/19=2.278V,可以計算得到:

 


  


開通過程中產生開關損耗為

開通過程中,Crss和米勒平臺時間t3成正比,計算可以得出米勒平臺所占開通損耗比例為84%,因此米勒電容Crss及所對應的Qgd在MOSFET的開關損耗中起主導作用。Ciss=Crss+Cgs,Ciss所對應電荷為Qg。對于兩個不同的MOSFET,兩個不同的開關管,即使A管的Qg和Ciss小于B管的,但如果A管的Crss比B管的大得多時,A管的開關損耗就有可能大于B管。因此在實際選取MOSFET時,需要優先考慮米勒電容Crss的值。


減小驅動電阻可以同時降低t3和t2,從而降低開關損耗,但是過高的開關速度會引起EMI的問題。提高柵驅動電壓也可以降低t3時間。降低米勒電壓,也就是降低閾值開啟電壓,提高跨導,也可以降低t3時間從而降低開關損耗。但過低的閾值開啟會使MOSFET容易受到干擾誤導通,增大跨導將增加工藝復雜程度和成本。


2 關斷過程中MOSFET開關損耗
關斷的過程如圖1所示,分析和上面的過程相同,需注意的就是此時要用PWM驅動器內部的下拉電阻0.5Ω和Rg串聯計算,同時電流要用*大電流即峰值電流6.727A來計算關斷的米勒平臺電壓及相關的時間值:VGP=2+6.727/19=2.354V。


關斷過程中產生開關損耗為:

Crss一定時,Ciss越大,除了對開關損耗有一定的影響,還會影響開通和關斷的延時時間,開通延時為圖1中的t1和t2,圖2中的t8和t9。

圖2 斷續模式工作波形

Coss產生開關損耗與對開關過程的影響
1 Coss產生的開關損耗
通常,在MOSFET關斷的過程中,Coss充電,能量將儲存在其中。Coss同時也影響MOSFET關斷過程中的電壓的上升率dVDS/dt,Coss越大,dVDS/dt就越小,這樣引起的EMI就越小。反之,Coss越小,dVDS/dt就越大,就越容易產生EMI的問題。


但是,在硬開關的過程中,Coss又不能太大,因為Coss儲存的能量將在MOSFET開通的過程中,放電釋放能量,將產生更多的功耗降低系統的整體效率,同時在開通過程中,產生大的電流尖峰。


開通過程中大的電流尖峰產生大的電流應力,瞬態過程中有可能損壞MOSFET,同時還會產生電流干擾,帶來EMI的問題;另外,大的開通電流尖峰也會給峰值電流模式的PWM控制器帶來電流檢測的問題,需要更大的前沿消隱時間,防止電流誤檢測,從而降低了系統能夠工作的*小占空比值。
Coss產生的損耗為:

對于BUCK變換器,工作在連續模式時,開通時MOSFET的電壓為輸入電源電壓。當工作在斷續模式時,由于輸出電感以輸出電壓為中心振蕩,Coss電壓值為開通瞬態時MOSFET的兩端電壓值,如圖2所示。


2 Coss對開關過程的影響
圖1中VDS的電壓波形是基于理想狀態下,用工程簡化方式來分析的。由于Coss存在,實際的開關過程中的電壓和電流波形與圖1波形會有一些差異,如圖3所示。下面以關斷過程為例說明?;诶硐霠顟B下,以工程簡化方式,認為VDS在t7時間段內線性地從*小值上升到輸入電壓,電流在t8時間段內線性地從*大值下降到0。

圖3 MOSFET開關過程中實際波形


實際過程中,由于Coss影響,大部分電流從MOSFET中流過,流過Coss的非常小,甚至可以忽略不計,因此Coss的充電速度非常慢,電流VDS上升的速率也非常慢。也可以這樣理解:正是因為Coss的存在,在關斷的過程中,由于電容電壓不能突變,因此VDS的電壓一直維持在較低的電壓,可以認為是ZVS,即0電壓關斷,功率損耗很小。


同樣的,在開通的過程中,由于Coss的存在,電容電壓不能突變,因此VDS的電壓一直維持在較高的電壓,實際的功率損耗很大。


在理想狀態的工程簡化方式下,開通損耗和關斷損耗基本相同,見圖1中的陰影部分。而實際的狀態下,關斷損耗很小而開通損耗很大,見圖3中的陰影部分。


從上面的分析可以看出:在實際的狀態下,Coss將絕大部分的關斷損耗轉移到開通損耗中,但是總的開關功率損耗基本相同。圖4波形可以看到,關斷時,VDS的電壓在米勒平臺起始時,電壓上升速度非常慢,在米勒平臺快結束時開始快速上升。

圖4 非連續模式開關過程中波形


Coss越大或在DS極額外的并聯更大的電容,關斷時MOSFET越接近理想的ZVS,關斷功率損耗越小,那么更多能量通過Coss轉移到開通損耗中。為了使MOSFET整個開關周期都工作于ZVS,必須利用外部的條件和電路特性,實現其在開通過程的ZVS。如同步BUCK電路下側續流管,由于其寄生的二極管或并聯的肖特基二極管先導通,然后續流的同步MOSFET才導通,因此同步MOSFET是0電壓導通ZVS,而其關斷是自然的0電壓關斷ZVS,因此同步MOSFET在整個開關周期是0電壓的開關ZVS,開關損耗非常小,幾乎可以忽略不計,所以同步MOSFET只有RDS(ON)所產生的導通損耗,選取時只需要考慮RDS(ON)而不需要考慮Crss的值。


注意到圖1是基于連續電流模式下所得到的波形,對于非連續模式,由于開通前的電流為0,所以,除了Coss放電產生的功耗外,沒有開關的損耗,即非連續模式下開通損耗為0。但在實際的檢測中,非連續模式下仍然可以看到VGS有米勒平臺,這主要是由于Coss的放電電流產生的。Coss放電快,持續的時間短,這樣電流迅速降低,由于VGS和ID的受轉移特性的約束,所以當電流突然降低時,VGS也會降低,VGS波形前沿的米勒平臺處產生一個下降的凹坑,并伴隨著振蕩。

希望看到這里大家都能深入理解功率MOSFET的開關損耗。

深圳市立業微電子有限公司    地址:深圳市寶安區西鄉前進二路桃源居三區1棟3樓    郵編:518001
電話:0755-27452985    傳真:0755-27451955   
 
亚洲卡通动漫第十页综合|日本无码h动漫免费|亚洲乱亚洲乱妇22p中文影视|九热爱视频精品视频|日韩欧美亚洲一区swag